

Demanding Change / Changing Demand

CITE Annual Meeting - Edmonton June 5, 2018

Planning for Cars

- Planning and designing for cars for 70-80 years
 - We still have traffic
 - A drain on:
 - Environmental health
 - Physical health
 - Fiscal health

Change is Afoot

- Policy directions are changing
 - Sustainable Transportation / Complete Streets / Integrated Mobility
- Technology is changing
 - Smart phones
 - Automated vehicles
 - Mobility Services
- Lifestyles are changing
 - Increasing urbanity
 - Reducing rate of driver's licenses

What does this mean?

- Planning / designing for everyone
 - Working with urban planners / designers
 - Inverting the priority pyramid
 - More bike lanes, more pedestrian space
 - Measuring different things
- Citizens and governments are demanding change
 - We need to change how we forecast and measure demand

Integrated M

- CUTA Definition:
 - "The ability for people to own needs."
- From Dillon's perspective, v
 - Travel Choices Who travels and how to influence it;
 - Connected Modes How peo,
 those modes, and how to make
 - Livable Communities & Street
 each other, and how to design

Forecasting Demand

- Estimating the demand for all travel modes for a city, new development, new business
- The root of all transportation planning analysis
 - From TIS to TMP
- Get this wrong and you get it all wrong

Focus Areas

- Input: Data needs to be better, data needs to be better understood
- Processes: Four step modelling is dead (long live four step modelling)
- Detail: Moving people, not just cars
- Changes: Trends, disruptors, and lesser bullies
- Output: Measuring pains and gains

Input

Data Needs to Be Better, Data Needs to Be Better Understood

Input

Traditional data collection

- Manual or semi-automated
- Capital and/or resource intensive
- Very limited locations and/or days

Big Data

- Passive collection instead of active
- Little to no capital or resources required
- Subscription or purchase costs

Big Data

- Detailed collection of movement data across a large area
 - Smartphones, GPS units, In-car GPS
- Volume, Velocity, Variety
- Differences
 - Passive vs. active collection
 - Coverage
 - Detail

Data Providers

- INRIX
 - GPS-based / 300 million units / cloud analytics
- Telus / Rogers
 - Collectors of data / tower-based
- CellInt
 - Cell tower-based / Intersection counts / OD by motorised mode
- CUEBIQ
 - Cellphone tracking (LBS) / App integration / 20%+ sample size
- Streetlight Insight
 - Applies INRIX and Cuebiq / web portal / Integration with PTV products
- Ocean Protocol
 - Decentralized data exchange / Creating data marketplace / Leverage many sources for innovation

Challenges

- Drinking from the firehose
 - Rise of data providers
- Privacy and Data Ownership
- Data Standards
- Cross-platform / Integration
- Costs
 - Looks expensive, potentially large value to many groups

Processes

Four Step Modelling is Dead, Long Live Four Step Modelling

Processes

- Four step modelling is dead / Long live four step modelling
 - Generation, distribution, mode choice, assignment
 - Single trip, single mode focus
 - Not going away
- Newer approaches
 - Consideration of the "journey" the full day or round-trip
 - Activity-based, Journey-based, Tour-based
 - Big challenge for smaller municipalities time, effort, expertise
- Traffic Modelling -> Transportation Modelling -> Mobility Modelling

Newer Concepts

- Changing up the paradigm
 - Capacity as an attractor for person trips—Active transportation and Transit
 - Capacity as a repulsor for vehicle trips
 - Integration and flexibility of modes public to private along the journey
 - Car share, bike share, MaaS, etc.

Details

Moving More Than Cars

Details

- Moving people across many modes
- Historically auto-focused with % takeoffs for active, maybe a transit model
- Focus should shift to understanding people huge variety of needs, wants, abilities
- Three levels of extra detail
 - People
 - Modes
 - Evolution of both over time

People

Hugely complex set of considerations

- Age, marital status, dependents, education, income, occupation, ethnicity, dwelling type, urban / suburban / rural
- Data is sparse or aggregated
 - Census, household activity surveys
- Agent-based simulation
 - Understand the aggregate of individuals
 - Mainly academic currently
 - Requires population synthesis fill in the gaps
 - DIY programming, Doppelganger, Prizm5

Sidewalk Labs - Doppelganger

Environics – Prizm5

Modes

- Ever increasing number of ways to get around
- Ever increasing fluidity / flexibility between modes
 - Mobility as a Service, bike share, car share, public and private service providers
 - Freedom through velocity < Freedom through choice
- No longer able to take auto demand +1-2% per year
- How to project uptake on new modes?

Changes

Trends, Disruptors, and Lesser Bullies

Changes

- Used to be: observe trend, project straight line
 - Increasing flexibility, options, desire for non-auto options
- Urbanisation is a key driver in new technology development and adoption
 - Limited space, need increased efficiency and flexibility
- Areas of disruption
 - Smartphones, MaaS, Connected/Automated Vehicles what's next?

Fuzzier and Fuzzier

- Trends are increasingly shaky
 - Walking millions of years; horses thousands;
 bikes hundreds; cars decades; CAVs ?;
 jet packs ?

- Need more fuzz to our predictions
 - Ensemble modelling intertwining independent algorithms
 - Large-scale sensitivity testing best to worst case for many variables
- Backcasting set goals, identify steps required and milestones

The Messy Middle

- Adoption rate of new technologies will vary
 - Region to region, urban to rural, etc.
 - E.g., connected / automated vehicles; Uber
- Increased presence of private mobility providers
 - What if they disappear?
- Need to establish resiliency and redundancy in the system

Outputs

Measuring Pains and Gains

Outputs

- Measuring pains and gains
- Traditionally just cared about delay to motorists
- Moves to transit, active modes
- Need to be able to quantify cost/benefit, measure improvement
- Need to be able to prioritise competing interests

Multi-Modal Level of Service

- Examine the full range of modes
- Alternatives will have +/- for every mode
- Need defined priorities, tradeoffs are inevitable in urban areas
- No industry standard yet
 - Is this bad?
 - Municipal soul-searching vs. off-the-shelf ideas

Person-Capacity

- Limited urban space
 - Cars are space hogs
- Focus on movement of people
 - 10 seconds delay for 1 motorist versus 40 bus passengers

Reliability

- Can be a key consideration in reality
 - Increased average, but fewer big swings can be attractive
- Requires additional scenario modelling
 - Large scale sensitivity, microsimulation across many seeds

Priorities

"Measure what you care about" – Jan Gehl

SO WHAT?

So What?

- Need practical solutions to reach policy goals
- Solution must be tailored for clients
- "The budget needs to match the vision" (Brent Toderian)
 - Double active transportation share? Double that budget.
- Use the Force, Luke. Let go! (Obi Wan Kenobi)
 - Disable the complexity: rank priorities and build for those.

Questions?

- Adam Lanigan, P. Eng.
 - alanigan@dillon.ca
 - (902) 450-5015 x5048

